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1. Introduction

One realization of the AdS/CFT correspondence [1 – 3] in M-theory is the duality of the

AdS7 × S4 vacuum and the 6-dimensional CFT which is obtained by a decoupling limit of

the M5 brane world-volume theory [4 – 6]. The nonabelian world-volume theory of multiple

M5-branes is presently unknown and the 6-dimensional CFT has been formulated in the

light cone gauge [7]. One interesting class of deformations in this theory is given by the

insertion of local half-BPS chiral operators, where half-BPS means the operators preserve

sixteen of the thirty-two supersymmetries. The gravitational duals of these operators are

the half-BPS solutions of Lin, Lunin, and Maldacena [8].

In our recent paper [9] (see also [10 – 13] for earlier work), new exact solutions of

11-dimensional supergravity were constructed which preserve sixteen of the thirty-two su-

persymmetries. In addition, the solutions preserve a SO(2, 2) × SO(4) × SO(4) bosonic

symmetry. Correspondingly, the 11-dimensional metric is constructed as a warped product

of AdS3×S3×S3 over a 2-dimensional base space Σ. These solutions can be interpreted as

the gravity duals of extended supersymmetric defects in the CFT. The solutions are local

in the sense that for a bosonic background, the vanishing of gravitino variation as well as

the bosonic equations of motion and Bianchi identities are satisfied point wise, except at

possible singularities.

In general, the local solutions of [9] contain a large variety of solutions many of which

contain singularities. An important problem is to pick out solutions which are asymptotic
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to either AdS4 × S7 or AdS7 × S4 and everywhere regular so that the supergravity ap-

proximation is valid. In particular this requires one to examine the global structure of the

solutions. Similar analysis have been carried out in Type IIB supergravity in [8, 15, 18].

An amazing result in all cases is that the regularity conditions in addition to the general

local solution admit a superposition principle for the half-BPS objects in the theory. We

expect such a principle to emerge from the analysis here. There are two distinct classes of

solutions which were found in [9]:

Case I contains solutions asymptotic to AdS4 × S7. The superalgebra of symmetries

is OSp(4∗|2) × OSp(4∗|2). The super Lie algebra OSp(4∗|2) is a particular real form of

OSp(4|2). In the classification of [17] this solution is case IV of table 11. M-theory on

AdS4 × S7 is dual to a 3-dimensional CFT which is obtained by a decoupling limit of the

world-volume theory of M2 branes. The local BPS solution is dual to 1 + 1-dimensional

conformal defects in the 3-dimensional CFT, analogous to the half-BPS defect solutions

obtained in type IIB string theory [14, 15] (see also [16] for earlier work).

Case II contains solutions asymptotic to AdS7 × S4. The bosonic isometries together

with the supersymmetries form a superalgebra which is given by OSp(4|2,R)×OSp(4|2,R).

The supergroup OSp(4|2,R) is a different real form of OSp(4|2) than the one appearing in

case I. In the classification of [17] this solution is case VII of table 12. M-theory on AdS7×S4

is dual to a 6-dimensional CFT which is obtained by a decoupling limit of the world-volume

theory of M5 branes. The local BPS solution is dual to 1+1-dimensional conformal defects

in the 6-dimensional CFT, analogous to the half-BPS Wilson loop solutions obtained in

type IIB string theory [18] (see also [12, 19] for earlier work).

The local solutions presented in [9] are very similar for the case I and II as the un-

derlying integrable system is the same. However, the analysis of the regularity and the

global structure is quite different. In this paper we will focus on the solution of case II.

The analysis of the regularity and global structure for case I will be analyzed in a separate

paper [20].

The structure of the paper is as follows. In section 2 the features of the local solution

for case II which are important for the present paper will be reviewed. In section 3 the

boundary conditions on the solution implied by regularity are analyzed. A general solution

which satisfies suitable boundary condition is constructed and it is shown that the solution

is regular everywhere. In section 4 the global structure of the solutions as well as its

interpretation in terms of the dual 6-dimensional conformal field theory is discussed. In

appendix A detailed proof of the regularity of our solution is presented.

2. Summary of local solution

In this section we review the local half-BPS solution of [9]. Derivations and more calcu-

lational details can be found in that paper. The 11-dimensional metric is a fibration of

AdS3 × S3 × S3 over a 2-dimensional Riemann surface Σ,

ds2 = f2
1ds

2
AdS3

+ f2
2ds

2

S3

2

+ f2
3ds

2

S3

3

+ ds2Σ (2.1)
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The four form field strength is given by

F4 = g1a ωAdS3
∧ ea + g2a ωS3

2

∧ ea + g3a ωS3

3

∧ ea (2.2)

Here ωAdS3
and ωS3

2,3

are the volume forms on AdS3 and S3
2,3 respectively. In addition

ea, a = 1, 2 is the vielbein on Σ. It is always possible to choose local complex coordinates

w, w̄ on the Riemann surface Σ such that the 2-dimensional metric in (2.1) is given by

ds2Σ = 4ρ2 |dw|2 (2.3)

The metric factors f1, f2, f3, ρ, as well as the flux fields g1a.g2a, and g3a only depend on Σ.

The Ansatz respects SO(2, 2) × SO(4) × SO(4) symmetry which can be interpreted as

the symmetries of a 1+1-dimensional conformal defect in the 6-dimensional M5 brane CFT.

The condition that 16 supersymmetries are unbroken is equivalent, for a purely bosonic

background, to the statement that the gravitino supersymmetry variation δǫΨM vanishes

for 16 linearly independent supersymmetry variation parameters.

In [9] the BPS conditions were solved, and it was shown that the half-BPS solution is

completely determined by the choice of a 2-dimensional Riemann surface Σ, a real harmonic

functions h(w, w̄) on Σ and a complex function G(w, w̄) which is a solution of the following

linear equation,

∂wG =
1

2
(G+ Ḡ)∂w lnh (2.4)

In order to express the local half-BPS solution in terms of G and h it is useful to define

the following quantity

W 2 = −|G|4 − (G− Ḡ)2 (2.5)

The metric factors in (2.1) are then given by

f6
1 = 4h2 (1 − |G|2)

W 4

(

|G− Ḡ| + 2|G|2
)3

f6
2 = 4h2 (1 − |G|2)

W 4

(

|G− Ḡ| − 2|G|2
)3

f6
3 =

h2W 2

16(1 − |G|2)2 (2.6)

The metric factor in (2.3) is given by

ρ6 =
(∂wh∂w̄h)

3

16h4
(1 − |G|2)W 2 (2.7)

The fluxes gi are defined by conserved currents as follows

(f1)
3g1w = −∂wb1 = 2(j+w + j−w )

(f2)
3g2w = −∂wb2 = −2(j+w − j−w )

(f3)
3g3w = −∂wb3 =

1

8
j3w (2.8)
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G=i h=0

y

x0

π/2
G=0 h=0

G=0 h=0

Figure 1: Σ and boundary conditions for AdS7 × S4 solution

where the conserved currents can be expressed in a compact way by defining

Jw =
h

G+ Ḡ

(

Ḡ(G− 3Ḡ + 4GḠ2)∂wG+G(G + Ḡ)∂wḠ

)

(2.9)

and are given by

j+w = 2i Jw

(

(G− Ḡ)2 − 4G3Ḡ

)

W−4

j−w = 2GJw

(

− 2GḠ + 3Ḡ2 −G2 + 4G2Ḡ2

)

W−4

j3w = 3∂wh
W 2

G(1 −GḠ)
− 2Jw

(1 +G2)

G(1 −GḠ)2
(2.10)

It was shown in [9] that the equations of motion of as well as the Bianchi identities are

satisfied for a harmonic h and a G which solves (2.4).

The simplest solution is the maximally symmetric AdS7 × S4 itself. The Riemann

surface is the half strip Σ = {(x, y), x ≥ 0, 0 ≤ y ≤ π/2}. Denoting the holomorphic

coordinate as w = x+ iy, the functions h and G are given by

h = −i( cosh(2w) − cosh(2w̄))

G = −isinh(w − w̄)

sinh(2w̄)
(2.11)

Plugging this into (2.6) the metric factors become

f1 = 2ch(x) f2 = 2sh(x) f3 = sin(2y) ρ = 1 (2.12)

Note that the Riemann surface Σ has three boundary components. The boundary is char-

acterized by the vanishing of the harmonic function h = 0. Furthermore, taking y = 0 or

y = π/2, we find G = 0, while taking x = 0, we find G = +i. So G takes the values 0

and +i on the boundary of Σ. The boundary of AdS7 × S4 on the other hand is located

at x = ∞.
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3. Regularity

In this section, we analyze the regularity conditions and the global structure of the solution.

We look for solutions which are everywhere regular and which are asymptotic to AdS7×S4.

This leads to the following three assumptions for the geometry.

1. The boundary of the 11-dimensional geometry is asymptotic to AdS7 × S4.

2. The metric factors are finite everywhere, except at points where the geometry be-

comes asymptotically AdS7 × S4, in which case the AdS3 metric factor and one of

the sphere metric factors diverge.

3. The metric factors are everywhere non-vanishing, except on the boundary of Σ, in

which case at least one sphere metric factors vanishes. In addition, both sphere metric

factors may vanish only at isolated points.

The second requirement guarantees that all singularities in the geometry are of the same

type as AdS7 ×S4. The third requirement guarantees that the boundary of Σ corresponds

to an interior line in the 11-dimensional geometry.

It follows from (2.6) that a particular combination of metric factors is very simple

(f1f2f3)
6 = h6 (3.1)

The metric factor f1 is positive definite and cannot vanish [9]. Hence the condition h = 0

(which defines a 1-dimensional subspace in Σ) occurs if and only if at least one of the

metric factors for the spheres f2 or f3 vanishes. It follows from assumption 3, that h = 0

defines the boundary of Σ.

Note that the equation for G (2.4) is covariant under conformal reparamaterizations.

This freedom allows one to choose local conformal coordinates1

u = r + i s, r = h(w, w̄), s = h̃(w, w̄) (3.2)

Here, h̃ is the harmonic function dual to h so that u is holomorphic, i.e. ∂ū(h + ih̃) = 0.

The domain of the new conformal coordinate u is the right half plane and the boundary of

Σ is at r = 0, i.e. the vertical axis.

In the coordinates r, s, it is useful to decompose G into its real and imaginary parts,

G(r, s) = Gr(r, s) + iGs(r, s) (3.3)

for Gr, Gs real functions. The real and imaginary parts of equation (2.4) are respectively,

∂rGr + ∂sGs =
Gr

r
(3.4)

∂rGs − ∂sGr = 0 (3.5)

Equation (3.5) can be solved in terms of a single real potential

Gr = ∂r(rΨ) Gs = ∂s(rΨ) (3.6)

1We use a slightly different notation: the coordinate s in this paper was called x in [9].
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Equation (3.4) becomes a second order partial differential equation on Ψ,

(

∂2
s + ∂2

r +
1

r
∂r −

1

r2

)

Ψ(r, s) = 0 (3.7)

The general local solution of (3.7) can be obtained by a Fourier transformation with respect

to s, which produces an ordinary differential equation which can be solved by [9]

Ψ(r, s) =

∫ ∞

−∞

dk

2π
ψ2(k)K1(kr)e

−iks (3.8)

Here K1 is the modified Bessel function of the second kind. There is a second linearly

independent solution of the form (3.8) which involves the modified Bessel function of the

first kind I1(kr). However this solution has the wrong behavior for large r and fails to obey

the regularity condition |G|2 ≤ 1. In [9] an explicit expression for Ψ and G was found by

defining C2(v)

C2(v) =

∫ ∞

0

dk

2π
ψ2(k) e

−kv (3.9)

and using the following integral representation of K1

K1(kr) =

∫ ∞

1

t dt√
t2 − 1

e−tkr (3.10)

Using (3.8)- (3.10) Ψ can be expressed in terms of C2

Ψ(r, s) =

∫ ∞

1

t dt√
t2 − 1

(

C2(tr + is) + C2(tr + is)∗
)

(3.11)

and (3.6) can be used to write G as follows

G(r, s) = r

∫ ∞

1

dt√
t2 − 1

(

(1 − t)C ′
2(tr + is) + (1 + t)C ′

2(tr + is)∗
)

(3.12)

3.1 Boundary conditions on G

In this section we analyze the boundary conditions G has to satisfy at h = 0 or in the r, s

coordinates at r = 0 in order for the solution to be regular near the boundary. It will be

useful to have the following expressions for the metric factors obtainable from (2.6)

(f1f2)
3 = −4r2

(1 − |G|2)
W

f3
3 = − rW

4(1 − |G|2) (3.13)

The behavior near the boundary (the regularity in the bulk of Σ will be discussed in the

next section) is exhibited by expanding Gr, Gs, at fixed s, in a power series in r,

Gr = γ1 r + γ3 r
3 + γ5 r

5 + O(r7)

Gs = γ0 + γ2 r
2 + γ4 r

4 + O(r6) (3.14)
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where the γi are all functions of s. Note that the reality of the solution implies that

G is bounded |G| ≤ 1 and hence no negative powers of r can appear in the series ex-

pansion (3.14). Equation (3.4) and (3.5) impose the vanishing of even/odd powers of r in

Gr/Gs respectively. Furthermore these equations impose differential equations in s between

the different γi(s) but these relations will not be needed in the following. The following

power series expansions will be useful in the following analysis,

W 2 = 4γ2
0(1 − γ2

0) + 8(γ0γ2 − 2γ3
0γ2 − γ2

0γ
2
1)r2 + O(r4)

1 − |G|2 = (1 − γ2
0) − (γ2

1 + 2γ0γ2)r
2 + O(r4) (3.15)

When γ0 6= ±1, we have |G| 6= 1 as r → 0. From (3.13), the product f1f2 goes to zero

as r → 0 and the geometry will be singular unless W ∼ r2. It follows from (3.15) that

one has to choose γ0 = 0 in order to avoid a singularity. If this is the case, f2 will remain

finite, while f3 → 0 so that the volume of the sphere S3
3 tends to zero. Comparing with the

AdS7 × S4 solution, this behavior is associated with the y = 0, π/2 boundary component

of (2.11).

When γ0 = ±1, we will have f2 → 0 while f3 will remain finite, as long as the conditions

γ1 6= ∓2γ2 and γ2
1 6= ∓γ2 are satisfied. If this is the case, the volume of the sphere S3

2 will

tend to zero. Comparing with the AdS7 ×S4 solution, this behavior is associated with the

x = 0 boundary component of (2.11).

In summary we have the following boundary conditions on G and the metric factors

G(0, s) = 0 ⇔ f2 6= 0 f3 = 0, Vol(S3
3) → 0

G(0, s) = ±i ⇔ f2 = 0 f3 6= 0 Vol(S3
2) → 0 (3.16)

3.2 General regular solution

We first parameterize the boundary conditions for G at r = 0 which leads to solutions

satisfying regularity conditions 1 to 3, listed at the beginning of section 3. As we shall see,

a further condition needs to be imposed to guarantee the absence of singularities in the

bulk, namely the values of G in the second line of (3.16) will be restricted to be either all

positive or all negative.

General boundary conditions for G are given by the choice of g+2 points on the s axis,

−∞ < a1 < b1 < a2 < b2 < · · · < ag+1 < bg+1 <∞ (3.17)

The AdS7 × S4 solution corresponds to g = 0. There are two kinds of intervals which are

distinguished by the boundary condition for G(0, s).

s ∈ [−∞, a1] G(s, 0) = 0

s ∈ [an , bn] G(s, 0) = iηn, n = 1, 2, · · · g
s ∈ [bn, an+1] G(s, 0) = 0, n = 1, 2, · · · g
s ∈ [bg+1,∞] G(s, 0) = 0 (3.18)

– 7 –
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g+1 s

r

G=0 G=0 G=0G=i

Σ

G=iη η
1 g+1

a b a a b1 1 2 g+1

Figure 2: The surface Σ and boundary conditions for a general regular solution.

where ηn = ±1. The boundary conditions can be implemented as follows:

G(s, 0) =

g+1
∑

n=1

iηn

(

Θ(s− an) − Θ(s− bn)

)

(3.19)

where Θ(s) is the step function. Since on each segment, G(s, 0) can take only the values

0,±i, no two bumps can “overlap”, and this forces the an and bn to alternate as in (3.17).

It remains to calculate ψ2(k) from the boundary condition in (3.19). To this end, we

first take the Fourier transform in s with ℓ > 0, of (3.6) with (3.8) plugged in

∫ ∞

−∞

ds e+iℓs ∂s

(

rΨ(s, r)
)

= −iℓrψ2(ℓ)K1(ℓr) (3.20)

whose r → 0 limit is simply obtained using the asymptotics of K1, and we find,

∫ ∞

−∞

ds e+iℓs lim
r→0

∂s

(

rΨ(s, r)
)

= −iψ2(ℓ) (3.21)

Using the boundary condition of (3.19), we thus have

ψ2(ℓ) =
∑

n

iηn

∫ an

bn

ds eiℓs =
∑

n

ηn
eiℓan − eiℓbn

ℓ
(3.22)

The Fourier transform can be done exactly

C2(v) = − 1

2π

∑

n

ηn ln

(

v − ian

v − ibn

)

(3.23)

The expression for G(s, r) may then be obtained using the integral representation (3.12)

G(s, r) =

∫ ∞

1

dt√
t2 − 1

(

r(1 − t)C ′
2(tr + is) + r(1 + t)C ′

2(tr + is)∗
)

(3.24)
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After some simplifications, we obtain,

G(s, r) = − 1

2π

g+1
∑

n=1

ηn

∫ ∞

1

dt√
t2 − 1

[

1 + iαn

t+ iαn
+

1 + iαn

t− iαn
− 1 + iβn

t+ iβn
− 1 + iβn

t− iβn

]

(3.25)

where the quantities αn and βn are defined as

αn = (s− an)/r, βn = (s− bn)/r, n = 1, 2, · · · g + 1 (3.26)

are both real. Next we use the integral formula

∫ ∞

1

dt√
t2 − 1

(

1

t+ z
+

1

t− z

)

=
π√

1 − z2
(3.27)

The result is an algebraic expression for G which solves (3.4) and satisfies the boundary

condition (3.19) and is given by

G(s, r) = −1

2

g+1
∑

n=1

ηn

(

r + is− ian
√

r2 + (s− an)2
− r + is− ibn
√

r2 + (s− bn)2

)

(3.28)

It is easy to see that (3.28) is equal to (3.19) in the limit r → 0.

3.3 Regularity in the bulk

In the remainder of this section we give an argument that the general solution (3.28)

is regular everywhere. Note that the general solution was constructed in section 3.2 by

demanding that the geometry is regular at the boundary of Σ.

The general solution (3.28) should also approach the AdS7 × S4 boundary asymptoti-

cally as r → ∞. The expression for AdS7 × S4. given in (2.11) can be recovered from the

general regular solution (3.28) by setting g = 0, η1 = −1 , a1 = −2 and b1 = 2.

G(s, r) =
r + is+ 2i

2|r + is+ 2i| −
r + is − 2i

2|r + is− 2i|

= −ish(w − w̄)

sh(2w̄)
(3.29)

where we have used the coordinates r = 2 sin(2y) sinh(2x) and s = 2cos(2y) sinh(2x). The

boundary of AdS7 is reached by taking x→ ∞. Using the same coordinate change for the

general solution it is easy to see that (3.28) approaches AdS7 × S4 in the limit x→ ∞.

It remains to show that the geometry is regular in the interior for Σ. Since h = r in

the chosen coordinate system the regularity of the solution requires that away from the

boundary W is required to satisfy the strict inequality W 2 > 0. Note that this condition

automatically guarantees that we also have 1 − |G|2 > 0. Furthermore the relation

W 2 = −4|G|4 − (G− Ḡ)2 = (|G − Ḡ| − 2|G|2)(|G − Ḡ| + 2|G|2) (3.30)

shows that if W 2 > 0 then individually (|G − Ḡ| − 2|G|2) 6= 0 and (|G − Ḡ| + 2|G|2) 6= 0.

Examining the explicit formula for the metric factors (2.6) one can see that they are then

– 9 –
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Figure 3: Metric factors for a g = 1 solution.

finite and the geometry is thus regular. It is shown in appendix A if the an, bn obey the

ordering (3.17) and the ηn are all either +1 or −1, that W 2 > 0 in the upper half plane

and hence the solution is regular everywhere.

To see the converse, that is if W 2 = 0 in the bulk then the solutions is singular, we

first note that for W 2 to vanish, either (|G− Ḡ| − 2|G|2) or (|G− Ḡ|+ 2|G|2) must vanish.

Taking the ratio of f1 and f2 in (2.6) we see that one of them must either be vanishing or

be infinite resulting in a singular geometry.

3.4 The g = 1 solution

In this section, we examine the g = 1 solution in detail, specifically we choose the param-

eters for the general solution (3.28) as follows:

g = 1, a1 = −2, b1 = −1, a2 = 0, b2 = 1 (3.31)

In figure 3, we show the behavior of the metric factors. The sphere metric factors al-

ternatingly vanish as r → 0. While as r → ∞, the metric factors flatten out to those

of AdS7 × S4.

For ρ there are singularities as we approach r → ∞, but these are coordinate singular-

ities and are due to the conformal transformation we made in order to map the half-strip

to the upper half plane.

An important feature of the solutions with g > 0 is that there are additional nontrivial

four cycles in the geometry. We can illustrate this feature for the g = 1 solution (3.31). In
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Figure 4: Nontrivial four cycles for the g = 1 solution
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Figure 5: The fluxes for a g = 0 solution.

addition to the four cycle C1 which is already present in the g = 0 solution, there are two

additional nontrivial four cycles C2 and C3.

The behavior of the fluxes for the g = 1 solution is very interesting. For comparison

purposes we first plot the fluxes (2.8) for the AdS7 × S4 solution given by (3.28) with

g = 0, a1 = −2, b1 = 1 (3.32)

Note that the fluxes g1 and g2 vanish identically and the only nontrivial flux is g3.

There is only one nontrivial topological cycle forming a four sphere. The integrated flux

g3 is nothing but the non-vanishing four form flux through the four sphere in AdS7 × S4.

In figure 6, we plot the fluxes for the g = 1 solution (3.31). Due to the complicated

form of the currents (2.8) we have not been able to integrate them to analytically obtain

a closed form of the fluxes. However it is clear from figure 6 that the g = 1 solution has

indeed nontrivial flux through the cycles C2 and C3 for g1 and g2 respectively.
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Figure 6: The fluxes for a g = 1 solution.

4. Discussion

In the previous section we found a family of regular half-BPS solutions labelled by an integer

g and 2g + 1 real moduli. In this section we discuss the interpretation of these solutions

from the point of view of the AdS/CFT correspondence. The AdS7 × S4 spacetime is

obtained as the near horizon limit of a large number of M5 branes. The AdS/CFT duality

relates M-theory on this background to the decoupling limit of the M5-brane world-volume

theory which defines a 6-dimensional CFT with (2, 0) supersymmetry [5, 4].

A first step towards interpreting the solution is to understand the boundary structure.

The only region on Σ where the spacetime becomes asymptotically AdS7 × S4 is r → ∞.

There is however another boundary component since the AdS3 factor also has a boundary.

This can be seen by rewriting the metric (2.1).

ds2 =
1

z2

(

f2
1 (dz2 + dx2 − dt2) + z2f2

2ds
2

S3

2

+ z2f2
3ds

2

S3

3

+ z2ds2Σ

)

(4.1)

The boundary of AdS3 is reached as z → 0 and the boundary metric is obtained by stripping

off the (divergent) conformal factor 1/z2. The z2 factor in front of the metric factors of
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the spheres and Σ implies that the boundary in the limit z → 0 is 1 + 1-dimensional

space extending in the t, x plane. The SO(2, 2) isometry of the AdS3 factor corresponds

to the conformal symmetry of the 1 + 1-dimensional defect, which is contained in the

OSp(4|2,R)×OSp(4|2,R) supergroup of preserved superconformal symmetries. Note that

for all values of g and the moduli there is only one defect.

The interpretation of the 1+1-dimensional half-BPS defect from the perspective of

the dual CFT is the supersymmetric self dual string solution of the 6-dimensional (2, 0)

supersymmetric M5-brane world-volume theory [21 – 23] which was constructed in [24].

The selfdual string in the (2, 0) theory can also be interpreted as the boundary of an

open M2 brane which ends on the M5-brane [25, 26] Unfortunately the action for multiple

membranes is not well understood and the selfdual string soliton solution has only been

derived for the abelian case of a single 5-brane.

There is a strong analogy of the selfdual string defect with the BPS-Wilson loop in Type

IIB string theory. While the details of the supergravity solution are somewhat different the

general structure of the half-BPS flux solution and its moduli space presented in section 3.2

is intriguingly similar to the Type IIB supergravity flux solutions dual to BPS Wilson loops

which was found in [18].

The BPS Wilson loop in AdS5 × S5 also has a probe description. The original pro-

posal [35, 36] identified the Wilson loop in the fundamental representation with a fun-

damental string with AdS2 world-volume inside AdS5. BPS-Wilson loops in higher rank

symmetric representation and are identified with a probe D3 brane with electric flux with

AdS2 × S2 world-volume inside AdS5. BPS-Wilson loops in higher rank anti-symmetric

representation and are identified with a probe D5 brane with electric flux with AdS2 × S4

world-volume inside AdS5 × S5 [27, 28].

The 1+1-dimensional BPS defect in the 6-dimensional CFT can be viewed as the

insertion “Wilson surface”-operator [29 – 32]. In the probe approximation one can use a

analogy between the Wilson loop in N = 4 SYM and the Wilson surface operators: The

fundamental string is related to M2-brane probe. The D3 brane with electric flux and

AdS2 ×S2 world-volume is related to a probe M5 brane with 3-form flux on its AdS3 ×S3

world-volume (with the S3 embedded in the AdS7). The D5 brane with electric flux

and AdS2 × S4 world-volume is related to a probe M5 brane with three form flux on its

AdS3 ×S3 world-volume (with the S3 embedded in the S4). These probe branes and their

supersymmetry where analyzed in [33, 34, 13]

The supergravity solutions we have obtained are the analog of the “bubbling” Wilson

loop solutions [18, 12, 28]. They are fully backreacted and replace the probe branes by

geometry and flux. In particular as the discussion of the g = 1 solution in section 3.4

showed there are two new nontrivial four cycles C2,3 in the g = 1 solution. The fluxes

through these cycles are the remnants of the probe M5-branes in the backreacted solution.

Unfortunately the (2, 0) theory for multiple M5-branes is not as well understood as N =

4 SYM theory. It is possible that the bubbling solutions can be useful in the understanding

of the M5-brane theory. It would be interesting to see whether there is an analog of

the matrix model description of the BPS-Wilson loops (and its relation to the bubbling

supergravity solution) for the Wilson surfaces.
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The general solution we have obtained has only one asymptotic AdS7 × S4 region. It

would be interesting to investigate whether its possible to have more than one asymptotic

AdS region, this would presumably correspond to a harmonic function h with multiple

poles. A similar phenomenon occurs in the case of half-BPS solutions which are asymptotic

to AdS4 × S7 which we are currently investigating [20].
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A. Proof of the regularity condition W
2

> 0

In this appendix we shall prove a theorem which is central to establishing the regularity of

the general solution constructed in section 3.2.

Theorem 1. When all ηn are equal to one another, the function G, defined by

G = −1

2

g+1
∑

n=1

ηn

(

1 + iαn
√

1 + α2
n

− 1 + iβn
√

1 + β2
n

)

(A.1)

satisfies W 2 > 0, for all αn, βn subject to the ordering condition

α1 < β1 < α2 < β2 < · · · < αg < βg < αg+1 < βg+1 (A.2)

Numerical analysis suggests that this property holds, and also shows that, when not all

ηn are equal to one another, the condition W 2 ≥ 0 is violated for some range of αn and

βn. We shall prove Theorem 1 for ηn = +1 for all n = 1, · · · , g + 1; the theorem for the

opposite case ηn = −1 then follows immediately.

We begin by simplifying the condition W 2 > 0 as follows,

W 2 = −4|G|4 − (G− Ḡ)2 =
(

|G− Ḡ| − 2|G|2
) (

|G− Ḡ| + 2|G|2
)

(A.3)

The second factor on the right hand side of the last equality is manifestly positive for all G,

and may be dropped in the inequality. Thus, the condition W 2 > 0 becomes equivalent to

the condition |G− Ḡ|−2|G|2 > 0, which is equivalent to the following quadratic inequality

X2 +

(

|Y | − 1

2

)2

<
1

4
G = X + iY (A.4)

whereX,Y are real. In the sequel, it will be convenient to introduce the following notations,

p(α) ≡ −1

2

1√
1 + α2

q(α) ≡ +
1

2

α√
1 + α2

p2 + q2 =
1

4
(A.5)
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In terms of these functions, we define the following partial sums, for m = 1, 2, · · · , g + 1,

Xm =

m
∑

n=1

(

p(αn) − p(βn)
)

Ym =

m
∑

n=1

(

q(βn) − q(αn)
)

(A.6)

so that the real and imaginary parts of G, defined in (A.4), are given

by X = Xg+1, Y = Yg+1.

The first key ingredient in the proof of Theorem 1 will be the fact that, for α ≥ 0, the

functions p(α) and q(α) are strictly monotonically increasing as α increases.

A.1 The case 0 ≤ α1

We begin by proving Theorem 1 for the following special ordering,

0 ≤ α1 < β1 < α2 < β2 < · · · < αg < βg < αg+1 < βg+1 (A.7)

Using the fact that p(α) and q(α) are monotonically increasing with α for α ≥ 0, it is

immediate that Xg+1 < 0 and Yg+1 > 0. Both bounds are sharp, as they can be saturated

at the boundary of the domain (A.2) in the limit where αn − βn → 0. A lower bound

for Xg+1 and an upper bound for Yg+1 may be obtained by letting βn − αn+1 → 0 (with

αg+2 ≡ +∞). Putting all together, we obtain the following double-sided bounds,

0 < −Xg+1 < −p(α1)

0 < Yg+1 <
1

2
− q(α1) (A.8)

To prove W 2 > 0, we proceed recursively. Using the definition (A.6), we have,

Xg+1 = Xg + p(α) − p(β)

Yg+1 = Yg + q(β) − q(α) (A.9)

where we use the abbreviations α = αg+1, and β = βg+1. Notice that we have Xg < 0 and

Yg > 0. The quantity of interest is

W 2
g+1 ≡ X2

g+1 +

(

Yg+1 −
1

2

)2

(A.10)

Here, we have suppressed the absolute value sign on Yg+1, as we already know that Yg+1 > 0.

To show that W 2 > 0 holds, it will suffice to show that W 2
g+1 < 1/4. Thus, we need to

derive an optimal upper bound for W 2
g+1, and show that this bound is less than 1/4.

We first derive an upper bound on W 2
g+1 as a function of α and β, subject to the

condition that βg < α < β. To this end, express W 2
g+1 as follows,

W 2
g+1 = (p(β) + xg)

2 + (q(β) − yg)
2

xg = −Xg − p(α)

yg = −Yg +
1

2
+ q(α) (A.11)
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The bounds established earlier, namely Xg < 0 and Yg < 1/2, guarantee that xg > 0 and

yg > 0 for all values of α ≥ 0. We now search for the maximum of W 2
g+1 as a function of β

over the interval β ∈ [α,+∞], with α viewed as fixed. To determine it, we investigate the

derivative with respect to β,

(W 2
g+1)

′(β) =
xgβ − yg
√

1 + β2
3

(A.12)

This derivative can vanish in the interval β ∈ [α,+∞] if and only if xgα − yg ≤ 0. If this

is the case, the corresponding point is β0 = yg/xg, which should satisfy β0 > α.

Hence, the extrema of W 2
g+1 as a function of β may be attained either at β = β0, or at

either one of the extremities of the interval β ∈ [α,+∞]. These three values are given by,

W 2
g+1(β0) = x2

g + y2
g +

1

4
−
√

x2
g + y2

g

W 2
g+1(α) = x2

g + y2
g +

1

4
+ 2p(α)xg − 2q(α)yg

W 2
g+1(∞) = x2

g + y2
g +

1

4
− yg (A.13)

Since xg, yg > 0, it is manifest that W 2
g+1(β0) < W 2

g+1(∞). Thus, W 2
g+1(β0) cannot be the

optimal upper bound for W 2
g+1(β). Comparing the remaining two possible values, we find,

W 2
g+1(∞) −W 2

g+1(α) = 2p(α)Xg + 2 (1 − q(α)) Yg (A.14)

Given that Xg < 0 and Yg > 0, it follows that the right hand side is positive and so that

W 2
g+1(∞) is the optimal upper bound. In summary,

W 2
g+1 < Vg(αg+1)

Vg(αg+1) ≡
(

Xg + p(αg+1)
)2

+
(

Yg − q(αg+1)
)2

(A.15)

for all values of αg+1 such that βg < αg+1.

Since Xg < 0 and Yg > 0, it is straightforward to derive an upper bound for the right

hand side of (A.15). Indeed, both terms increase as αg+1 decreases. Thus, the optimal

bound for the right hand side is attained when αg+1 assumes its smallest possible value,

which is αg+1 = βg. Hence, we have

Vg(αg+1) < Vg(βg) αg+1 ∈ [βg,∞] (A.16)

But, using the definitions of Xg and Yg in terms of αn and βn, we see that the quantity

Vg(βg) admits a drastic simplification,

Vg(βg) =
(

Xg−1 + p(αg)
)2

+
(

Yg−1 − q(αg)
)2

= Vg−1(αg) (A.17)

Combining all, we get a recursive series of bounds,

W 2
g+1 < Vg(αg+1) < Vg−1(αg) < Vg−2(αg−1) < · · · < V0(α1) (A.18)

From their definitions, X0 = Y0 = 0, we readily find V0(α1) = 1/4, so that W 2
g+1 < 1/4.

This concludes the demonstration of Theorem 1 for the case 0 ≤ α1.
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A.2 The case βg+1 ≤ 0

Next, we proceed to proving Theorem 1 for the following special ordering,

α1 < β1 < α2 < β2 < · · · < αg < βg < αg+1 < βg+1 ≤ 0 (A.19)

It is not necessary to repeat the steps analogous to the proof for the case 0 ≤ α1, since we

can reduce the present case to the α1 ≥ 0 case by changing variables,

αn = −β̃g+2−n n = 1, · · · , g + 1

βn = −α̃g+2−n (A.20)

The α̃n and β̃n are now all positive and satisfy the following ordering,

0 ≤ α̃1 < β̃1 < α̃2 < β̃2 < · · · < α̃g < β̃g < α̃g+1 < β̃g+1 (A.21)

Denoting the corresponding function by G−, and its real and imaginary parts by X−
g+1 and

Y −
g+1, we have by definition,

X−
g+1 =

g+1
∑

n=1

(

p(β̃n) − p(α̃n)
)

= −X̃g+1

Y −
g+1 =

g+1
∑

n=1

(

q(β̃n) − q(α̃n)
)

= +Ỹg+1 (A.22)

where X̃g+1 and Ỹg+1 are given by (A.6) but with αn → α̃n and βn → β̃n. From the proof

of the case α1 ≥ 0, it now follows that W 2 > 0 also for this special case.

A.3 The general case

Next, we shall prove Theorem 1 for the cases whose ordering is given by

α1 < β1 < · · · < αN < βN ≤ 0 ≤ αN+1 < βN+1 < · · · < αg+1 < βg+1 (A.23)

for N = 1, · · · , g. (The proof for the case with the ordering · · · < αN < 0 < βN < · · ·
follows the same steps, or may be derived by taking the limit αN+1, βN → 0 in the ordering

of (A.23), and need not be detailed here.)

It remains only to prove Theorem 1 for the ordering (A.23). To do so, we use the

fact that the behaviors of the variables larger than 0 and those smaller than zero are

independent of one another. Concretely, we define the following partial sums,

X− =

N
∑

n=1

(p(αn) − p(βn))

X+ =

g+1
∑

n=N+1

(p(αn) − p(βn))

Y − =
N
∑

n=1

(q(βn) − q(αn))

Y + =

g+1
∑

n=N+1

(q(βn) − q(αn)) (A.24)
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so that the full sums are given by

G = Xg+1 + iYg+1 Xg+1 = X+ +X−

Yg+1 = Y + + Y − (A.25)

To the sums X+, Y +, we apply the results derived for case 0 ≤ α1, while to the sums

X−, Y −, we apply the results derived for case βg+1 < 0, namely

X+ < 0 0 < Y + <
1

2
(X+)2 +

(

Y + − 1

2

)2

<
1

4

X− > 0 0 < Y − <
1

2
(X−)2 +

(

Y − − 1

2

)2

<
1

4
(A.26)

From the fact that X+ and X− have opposite sign, and the fact that Y + − 1/2 and Y −

have opposite sign, it follows immediately that

(

X+ +X−
)2

+

(

Y + + Y − − 1

2

)2

<
(

X±
)2

+

(

Y ± − 1

2

)2

<
1

4
(A.27)

so that |G − Ḡ| − 2|G|2 > 0, and thus W 2 > 0, which completes the proof of Theorem

1 in the general case. Note that the range of G in the general case is all of the disc

|G− 1/2| < 1/2.
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